The Crystal Structure of $\mathrm{Te}_{4} \mathrm{O}_{\mathbf{9}}$

By Oliver Lindqvist and Wanda Mark
Department of Inorganic Chemistry, Chalmers, University of Technology and the University of Göteborg, P.O. Box, S-402 20 Göteborg 5, Sweden
and Jacques Moret
Laboratoire de Chimie Minerale C, E. R.A. 314 Université des Sciences et Techniques du Languedoc, Place E. Bataillon, 34060 Montpellier, France

(Received 2 December 1974; accepted 6 December 1974)

Abstract

Single crystals of $\mathrm{Te}_{4} \mathrm{O}_{9}$ have been prepared by hydrothermal synthesis. The structure has a hexagonal cell with $a=b=9 \cdot 320, c=14 \cdot 486 \AA$. Unusual extinctions indicate that the crystals are disordered. The structure is built up of covalent $\left(\mathrm{TeO}_{3} .3 \mathrm{TeO}_{2}\right)_{n}$ layers and the disorder arises since these layers can be stacked either normally or inverted. It was possible to divide the reflexions into three classes, corresponding to contributions from the normally stacked structure, from the inverted structure, and from both. The normally stacked structure crystallizes in space group $R \overline{3}$. It was refined to an R of 0.042 and revealed the expected $\mathrm{Te}^{\mathrm{ev}}$ and $\mathrm{Te}^{\mathrm{VI}}$ coordination in the layers. $\mathrm{Te}^{\mathrm{VI}_{\mathrm{I}}}$ is octahedrally surrounded by oxygen atoms with $\mathrm{Te}^{\mathrm{V} \mathrm{I}}-\mathrm{O}=1.903$ and $1.948 \AA$. The four strong $\mathrm{Te}^{\mathrm{ev}}-\mathrm{O}$ bonds of $1 \cdot 883,1 \cdot 902,2.020$ and $2.144 \AA$ are directed towards four corners of a trigonal bipyramid.

Introduction

Some crystallographic investigations of the structures of phases in the $\mathrm{TeO}_{3}-\mathrm{TeO}_{2}-\mathrm{H}_{2} \mathrm{O}$ system have been carried out recently (Lindqvist, 1973). A new compound in this system, $\mathrm{Te}_{4} \mathrm{O}_{9}$, has been isolated and characterized (Moret \& Lindqvist, 1972) and the present study has been undertaken to establish its crystal structure.

The oxygen coordination of $\mathrm{Te}^{\mathrm{VI}}$ has always been found to be octahedral, while that of $\mathrm{Te}^{\mathrm{IV}}$ usually varies considerably in different tellurates(IV), according to the structural environment (Zemann, 1971; Lindqvist, 1973). However, $\mathrm{Te}_{2} \mathrm{O}_{5}$ (Lindqvist \& Moret, $1973 a$) and $\mathrm{H}_{2} \mathrm{Te}_{2} \mathrm{O}_{6}$ (Lindqvist \& Moret, 1973b) have been shown to have closely related structures, the coordination polyhedra of $\mathrm{Te}^{\mathrm{IV}}$ and $\mathrm{Te}^{\mathrm{VI}}$ in the one compound showing remarkable similarity to the corresponding polyhedra in the other. Since a comparison of these polyhedra has proved valuable in the clarification of the effect of the environment on the $\mathrm{Te}^{\mathrm{IV}}$ and $\mathrm{Te}^{\mathrm{VI}}$ oxygen bonds, it was hoped that the structure of $\mathrm{Te}_{4} \mathrm{O}_{9}$, which is another simple $\mathrm{Te}^{\mathrm{IV}, \mathrm{VII}}$ oxide, would supply further information.

Experimental

Single crystals of $\mathrm{Te}_{4} \mathrm{O}_{9}$ were prepared by hycirothermal synthesis at $350^{\circ} \mathrm{C}$ starting from $\mathrm{Te}(\mathrm{OH})_{6}, \mathrm{TeO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ (Moret, 1972). $\mathrm{Te}_{4} \mathrm{O}_{9}$ has a hexagonal lattice, and the cell dimensions $a=b=9 \cdot 320$ (5), $c=14 \cdot 486$ (5) \AA, were calculated from measurements on a powder diffractometer (Moret \& Lindqvist, 1972). The density was $5.9 \mathrm{~g} \mathrm{~cm}^{-3}$, which indicated $Z=6$ ($\varrho_{\text {calc }}=5.97 \mathrm{~g}$ cm^{-3}). Weissenberg and precession photographs of
different crystals showed no ordinary extinctions other than for $00 l, l \neq 3 n$. On the other hand, only those reflexions with either $-h+k+l=3 n$ or $h-k+l=3 n$ were present, indicating that $\mathrm{Te}_{4} \mathrm{O}_{9}$ might be twinned or disordered. It was not possible to detect any continuous intensity distribution in reciprocal space for any of the crystals mounted.
The crystal selected for data collection had welldeveloped faces (Table 1) and was mounted along \mathbf{c} on a Pailred two-circle diffractometer. Graphite-monochromated Mo $K \alpha$ radiation was used. The intensities were collected by the ω-scan procedure with a scanning speed of $2.5^{\circ} \mathrm{min}^{-1}$. The background was measured for 24 s at each end of the scan interval, which was varied between 3.0 and 6.0° for different scattering vectors. One quarter of the reciprocal sphere was explored out to $2 \theta \sim 60^{\circ}$. Within this limit reflexions corresponding to the hexagonal lattice were measured and thus the unusual reflexion conditions $-h+k+l=3 n$

Table 1. Dimensions of the crystal used for data collection

The distances from a common origin to each plane are given.

Plane			
h	k	l	$d(\mathrm{~mm})$
0	0	1	0.088
0	0	-1	0.088
1	1	1	0.102
-2	1	1	0.102
1	-2	1	0.102
2	-1	-1	0.102
-1	2	-1	0.102
-1	-1	-1	0.102

Crystal volume: $0.65 \times 10^{-2} \mathrm{~mm}^{3}$
and $h-k+l=3 n$ could be checked. The 1618 reflexions with $\sigma(I) / I<0 \cdot 3$ were defined as significant.

The program $D A T A P 1$, written by 0 . Lindgren, Göteborg, was used for the calculation of Lp factors, and the data were corrected for absorption with the program DATAP2 (Coppens, Leiserowitz \& Rabinovich, 1965). $\mu_{\mathrm{Mo} K \alpha}=164.8 \mathrm{~cm}^{-1}$ was calculated from International Tables for X-ray Crystallography (1962), the transmission factors varying from 0.070 to 0.142 .

Structure determination

The reflexions with $-h+k+l=3 n$, according to the above definition of axes, were generally much stronger than the others. These strong reflexions, corresponding to one of the rhombohedral space groups $R 3$ or $R \overline{3}$, were selected for a preliminary investigation of the structure. The Patterson function revealed two Te positions in $R \overline{3}: 6(c)$ for $\mathrm{Te}^{\mathrm{V1}}$ and $18(f)$ for $\mathrm{Te}^{\mathrm{IV}}$. A subsequent electron-density calculation gave maxima corresponding to all the O atoms [three positions $18(f)$]. A preliminary refinement of the atomic coordinates and isotropic temperature factors gave an R as low as 0.084 , although it was evident that this structure model could not explain the weaker intensities, i.e. those with $h-k+l=3 n, l \neq 3 n$.

To account for the weak reflexions, different models with hexagonal symmetry lower than $R \overline{3}$ were tried
(e.g. $P 3, P \overline{3}, P 3_{1}$ and $P 3_{2}$), but none gave satisfactory agreement. In every refinement the structure converged towards the $R \overline{3}$ arrangement.

Since the $R \overline{3}$ structure ought to be essentially correct, according to the results of the refinement, it was studied geometrically to see if some type of disorder might be possible. The structure is built up from layers of covalently connected Te and O atoms perpendicular to \mathbf{c} (Fig. 1). These layers are held together by van der Waals forces only, being in accordance with the observed crystal cleavage planes (cf. Fig. 2). In the $R \overline{3}$ structure, adjacent layers, defined as $L 0$ and $L 1$, are related by $[x, y, z] \rightarrow\left[\frac{2}{3}+x, \frac{1}{3}+y, \frac{1}{3}+z\right]$ (Fig. 3). If instead the operation $[x, y, z] \rightarrow\left[\frac{1}{3}+y, \frac{2}{3}+\right.$ $\left.x, \frac{1}{3}+z\right]$ is considered the resulting transformed layer, $L 1^{\prime}$, (Fig. 4) would correspond to a structure in which \mathbf{c} is inverted. As indicated in Figs. 3 and 4 there are no great differences between the inter-layer $\mathrm{O} \cdots \mathrm{O}$ contacts if the packing sequence $L 0, L 1^{\prime}$ occurs instead of $L 0, L 1$. It was therefore assumed that the $\mathrm{Te}_{4} \mathrm{O}_{9}$ crystals prepared were disordered, i.e. that they contained sheets of normal layers as well as sheets of inverted layers. Since there is no continuous intensity distribution along c^{*}, each ordered sheet must contain a large number of layers (Fig. 2).

According to this model, the two inverted structures should have the reflexion conditions $-h+k+l=3 n$ (normal structure) and $h-k+l=3 n$ (inverted structure).

Table 2. Final atomic parameters in the $\mathrm{Te}_{4} \mathrm{O}_{9}$ layers
The fractional coordinates refer to the normal $R \overline{3}$ symmetry. The anisotropic temperature factor is

$$
\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}+2 h k a^{*} b^{*} U_{12}+2 h l a^{*} c^{*} U_{13}+2 k l b^{*} c^{*} U_{23}\right) \times 10^{-4}\right]
$$

Isotropic extinction parameter (Coppens \& Hamilton, 1970): $g=1 \cdot 36(14) \times 10^{4}$.

Fig. 1. Stereoscopic picture of part of an infinite layer, $L 0$, in $\mathrm{Te}_{4} \mathrm{O}_{9}$.

Fig. 2. Electron micrographs of a fragment of a $\mathrm{Te}_{4} \mathrm{O}_{9}$ crystal. The cleavage planes perpendicular to the c axis are visible. The magnifications are (a) $360 \times$ and (b) $1800 \times$.

To confirm the proposed arrangement the two classes of reflexions were treated separately, and those reflexions fulfilling both conditions, i.e. with $l=3 n$, were discarded. A preliminary refinement based on the weaker set of reflexions ($h-k+l=3 n, l \neq 3 n$), with atomic parameters corresponding to the inverted structure, gave an R of $0 \cdot 11$, which verifies the hypothesis given above.

Table 3. Observed and calculated structure factors for the normal structure of $\mathrm{Te}_{4} \mathrm{O}_{9}$

The columns are l, F_{o} and F_{c}, respectively.

For the continued refinement of the structural parameters of $\mathrm{Te}_{4} \mathrm{O}_{9}$ only the reflexions with $-h+k+l=$ $3 n, l \neq 3 n$ were used. These reflexions were generally strong and had been measured with good statistics. The F_{o} / F_{c} scale factors for the two different sets of data indicated that the inverted structure only occurred to an extent of $\sim 12 \%$ in the crystal used for data collection.
Since the reflexions selected can be considered to correspond to a fully ordered structure, the final refinement could be performed in the usual manner. After inclusion of anisotropic temperature factors and an isotropic extinction parameter (g) a final R of 0.042 was obtained. The atomic parameters with their standard deviations are given in Table 2. A difference synthesis showed a maximum electron density of 1.5 e \AA^{-3}. Observed and calculated structure factors for the 495 independent reflexions used in the final refinement are given in Table 3.
Scattering factors given by Cromer \& Waber (1965) were used for Te and those by Doyle \& Turner (1968) for O . The Te scattering factors were corrected for the real part of the anomalous dispersion (Cromer, 1965). The weights used in the refinement were calculated from $w=\left(a+F_{o}+c F_{o}^{2}+d F_{o}^{3}\right)^{-1} \quad$ (Cruickshank, 1970) with $a=40 \cdot 0, c=0.003$ and $d=0.00002$. A weight analysis is given in Table 4.
The Fourier summations were performed with the program $D R F$, written by A. Zalkin, Berkeley, Cali-

Table 4. Weight analysis after the last cycle of refinement

The quantities $w \Delta^{2}$ are normalized sums, $K_{\text {norm }}\left(\sum w\left|F_{o}-\left|F_{c}\right|\right|^{2}\right)$, and N is the number of reflexions within each F_{o} interval.

F_{o} interval	$w \Delta^{2}$	N
$0-46 \cdot 5$	$3 \cdot 49$	56
$46 \cdot 5-71 \cdot 2$	$1 \cdot 02$	60
$71 \cdot 2-91 \cdot 2$	$0 \cdot 41$	47
$91 \cdot 2-116 \cdot 1$	$0 \cdot 91$	56
$116 \cdot 1-142 \cdot 2$	0.49	46
$142 \cdot 2-171 \cdot 9$	$0 \cdot 50$	46
$171 \cdot 9-212 \cdot 1$	0.93	49
$212 \cdot 1-261 \cdot 9$	$0 \cdot 57$	45
$261 \cdot 9-345 \cdot 9$	$0 \cdot 63$	47
$345 \cdot 9-630 \cdot 0$	0.52	43

$$
\begin{aligned}
& R=\sum\left|F_{o}-\left|F_{c}\right|\right| / \sum F_{o}=0.042 \\
& R_{w}=\left(\sum w\left|F_{o}-\left|F_{c}\right|^{2} / \sum w F_{o}^{2}\right)^{1 / 2}=0.065\right.
\end{aligned}
$$

Fig. 3. Stereoscopic view of two normally packed layers, $L 0$ and $L 1$. The shortest inter-layer oxygen-oxygen [O(2) in $L 0, O(3)$ in L1] distance of $2 \cdot 94 \AA$ is indicated by a dotted line.
fornia, and the refinement with $B L O C K$, written by O. Lindgren, Göteborg, and LINUS (Coppens \& Hamilton, 1970) for the final cycles. Interatomic distances and angles (cf. Tables 5 and 6) were calculated with the program DISTAN written by A. Zalkin.

Table 5. Distances (\AA) and angles $\left(^{\circ}\right)$ within the tellurium oxygen polyhedra
The notation is in accordance with Figs. 5 and 6.

$\mathrm{Te}^{\mathrm{vi}}$ - $\mathrm{O}(2)$	1.903 (8) (3x)	$\mathrm{Te}^{\mathrm{e} \mathrm{V}-\mathrm{O}(1)}$	$1 \cdot 902$ (9)
$\mathrm{Te}^{\mathrm{vi}_{1}}-\mathrm{O}(1)$	1.948 (9) (3x)	$\mathrm{Te}^{\mathrm{elv}} \mathrm{O} \mathrm{O}(3)$	1.883 (8)
		$\mathrm{Te}^{\mathrm{e}-\mathrm{O}} \mathrm{O}(2)$	2.020 (9)
$\mathrm{O}(1)-\mathrm{Te}^{\mathrm{vi}}-\mathrm{O}(1)$	86.7 (4)	$\mathrm{Te}^{\mathrm{elv}-\mathrm{O}\left(3^{\prime}\right)}$	2.144 (8)
$\mathrm{O}(1)-\mathrm{Te}^{\mathrm{V1}}-\mathrm{O}(2)$	94.6 (4)	$\mathrm{Te}^{\mathrm{iv}}-\mathrm{O}\left(3^{\prime \prime}\right)$	$2 \cdot 820$ (9)
$\mathrm{O}(1)-\mathrm{Te}^{\mathrm{VI}}-\mathrm{O}(2)$	$90 \cdot 1$ (4)		
$\mathrm{O}(2)-\mathrm{Te}^{\mathrm{VI}^{-}-\mathrm{O}(2)}$	88.7 (3)	$\mathrm{O}(1)-\mathrm{Te}^{\text {IV }}-\mathrm{O}(2)$	(4)
		$\mathrm{O}(1)-\mathrm{Te}^{\mathrm{lV}}-\mathrm{O}(3)$	98.5 (4)
$\mathrm{Te}^{\mathrm{v}_{\mathrm{V}}-\mathrm{O}}$ (1)-Te $\mathrm{Te}^{\text {lv }}$	135.1 (5)	$\mathrm{O}(1)-\mathrm{Te}^{\mathrm{IV}}-\mathrm{O}\left(3^{\prime}\right)$	90.1 (3)
	$138 \cdot 5$ (4)	$\mathrm{O}(2)-\mathrm{Te}^{\mathrm{lV}}-\mathrm{O}(3)$	90.8 (3)
	118.1 (4)	$\mathrm{O}(2)-\mathrm{Te}^{\text {IV }}-\mathrm{O}(3)$	172.0 (3)
		$\mathrm{O}(3)-\mathrm{Te}^{\mathrm{lV}-\mathrm{O}}$ (3)	81.7 (3)

Table 6. Inter-layer oxygen-oxygen distances below $4.0 \AA$
(a) Normally packed layers

$\mathrm{O}(1)-\mathrm{O}(1)$	$3.282(15)(2 \times)$
$\mathrm{O}(1)-\mathrm{O}(3)$	$3.720(12)$
$\mathrm{O}(2)-\mathrm{O}(2)$	$3.593(17)$
$\mathrm{O}(2)-\mathrm{O}(3)$	$2.943(11)$

(b) One layer inverted

$\mathrm{O}(1)-\mathrm{O}(2)$	$2 \cdot 782(11)$
$\mathrm{O}(1)-\mathrm{O}(2)$	$3.139(11)$
$\mathrm{O}(1)-\mathrm{O}(2)$	$3.959(12)$
$\mathrm{O}(1)-\mathrm{O}(3)$	$3.288(11)$
$\mathrm{O}(2)-\mathrm{O}(2)$	$3.793(11)$
$\mathrm{O}(2)-\mathrm{O}(3)$	$3.487(11)$
$\mathrm{O}(2)-\mathrm{O}(3)$	$2 \cdot 920(11)$

Discussion

The layers found in $\mathrm{Te}_{4} \mathrm{O}_{9}$ are built up from $\mathrm{Te}^{\mathrm{VI}} \mathrm{O}_{6}$ octahedra and $\mathrm{Te}^{\text {lv }} \mathrm{O}_{4}$ units which share corners (Fig. 1). The three-dimensional structure is formed by the stacking of such layers upon each other in the \mathbf{c} direction. The disorder, as described above, may occur since the shortest inter-layer $\mathrm{O}-\mathrm{O}$ van der Waals distances between normal layers are only slightly longer than those obtained if one layer is inverted (Table 6).

The identical building units in the two possible stacking seqences suggest that fragments of infinite layers shown in Fig. 1 might be present in aqueous solution during the hydrothermal preparation. Formally, it is difficult to classify the disorder found in $\mathrm{Te}_{4} \mathrm{O}_{9}$. It does not conform to the definition of OD structures (Dorn-berger-Schiff, 1966), since the vicinity condition required for such structures is not fulfilled. Nor is it a twin, since no twin plane is present.

The coordination polyhedra of $\mathrm{Te}^{\mathrm{VI}}$ and $\mathrm{Te}^{\mathrm{IV}}$ in $\mathrm{Te}_{4} \mathrm{O}_{9}$ (Figs. 5 and 6) are very similar to those in $\mathrm{Te}_{2} \mathrm{O}_{5}$ (Lindquist \& Moret, 1973a) and in $\mathrm{H}_{2} \mathrm{Te}_{2} \mathrm{O}_{6}$ (Lindqvist \& Moret, 1973b). The octahedral coordination of $\mathrm{Te}^{\mathrm{VI}}$ deviates somewhat from the ideal symmetry (Table 5) and the difference between the $\mathrm{Te}^{\mathrm{V}}-\mathrm{O}(2)$ and $\mathrm{Te}^{\mathrm{VI}}-\mathrm{O}(1)$ bond lengths of 1.903 (8) and 1.948 (9) \AA has a clear significance.

The four-coordination of $\mathrm{Te}^{\mathrm{lv}}$ conforms well to the usual description as a trigonal bipyramid with one of the equatorial positions occupied by the free electron pair. The difference between the two axial bonds, 2.020 (9) and $2 \cdot 144$ (8) \AA, is of the same magnitude as in $\mathrm{Te}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}$ (Lindqvist, 1967) and in $\mathrm{Te}_{2} \mathrm{O}_{4} \cdot \mathrm{HNO}_{3}$

Fig. 5. The octahedral coordination of $\mathrm{Te}^{\mathrm{vI}^{\prime}}$ with distances in \AA.

Fig. 4. Stereoscopic view of two layers ($L 0, L 1^{\prime}$) where the above layer is inverted in relation to layer $L 1$ in Fig. 3. The dotted line indicates the shortest inter-layer oxygen-oxygen distance of $2 \cdot 78 \AA\left[O(2)\right.$ in $L 0, O(1)$ in $\left.L 1^{\prime}\right]$.

Fig. 6. The four-coordination of $\mathrm{Te}^{\mathrm{Iv}}$ with distances in \AA.
(Swink \& Carpenter, 1966) and may be explained as a weak tendency towards threefold $\mathrm{Te}^{\mathrm{IV}}$ coordination. The continuous variation of the fourth $\mathrm{Te}^{\mathrm{IV}}-\mathrm{O}$ length from $\sim 2.05 \AA$ in pure fourfold coordination to ~ 3.00 \AA in pure threefold coordination has been reviewed previously (Zemann, 1971; Lindqvist, 1973) and has also been discussed in connexion with the investigation of $\mathrm{CuTe}_{2} \mathrm{O}_{5}$ (Hanke, Kupčik \& Lindqvist, 1973).

The $\mathrm{Te}_{2} \mathrm{O}_{5}$ and the $\mathrm{H}_{2} \mathrm{Te}_{2} \mathrm{O}_{6}$ structure investigations indicated a correlation between the variation in the $\mathrm{Te}^{\mathrm{VI}}-\mathrm{O}$ lengths and the $\mathrm{Te}^{\mathrm{IV}}$ axial and equatorial bonds. In the $\mathrm{Te}^{\mathrm{VI}}-\mathrm{O}-\mathrm{Te}^{\mathrm{IV}}{ }_{\text {eq }}$ sequence the $\mathrm{Te}^{\mathrm{VI}}-\mathrm{O}$ bond was found to be significantly longer than in the $\mathrm{Te}^{\mathrm{VI}}-\mathrm{O}-$ $T e^{1 v}{ }_{\text {ax }}$ bridge. The explanation suggested for this effect (Lindqvist \& Moret, 1973a) is that the O electrons available for π bonding are engaged in the $\mathrm{Te}^{\mathrm{IV}}-\mathrm{O}_{\mathrm{eq}}$ bond to a much larger extent than in the $\mathrm{Te}^{\mathrm{IV}}-\mathrm{O}_{\mathrm{ax}}$ bond. In the $\mathrm{Te}^{\mathrm{VI}}-\mathrm{O}-\mathrm{Te}^{\mathrm{IV}}{ }_{\text {ax }}$ bridge the oxygen p orbital
available for π bonding can therefore be oriented favourably for π contribution to the $\mathrm{Te}^{\mathrm{VI}}-\mathrm{O}$ bond. This is clearly also the case in $\mathrm{Te}_{4} \mathrm{O}_{9}$ (Table 5), in which the $\mathrm{Te}^{\mathrm{VI}}-\mathrm{O}$ bonds are 1.903 (8) and 1.948 (9) \AA, as the oxygen atom is connected to $\mathrm{Te}^{\mathrm{Iv}}$ in axial or equatorial position, respectively.

We wish to thank Professors G. Lundgren and M. Maurin for their support of this work. Financial aid has been given by the Swedish Natural Science Research Council (NFR, Contract No. 2318).

References

Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104 109.

Cruickshank, D. W. J. (1970). In Crystallographic Computing, p. 195. Copenhagen: Munksgaard.
Dornberger-Schiff, K. (1966). Lehrgang über OD-Strukturen. Berlin: Akademie-Verlag.
Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A24, 390-399.
Hanke, K., Kupčik, V. \& Lindquist, O. (1973). Acta Cryst. B29, 963-970.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

LinDQvist, O. (1967). Acta Chem. Scand. 21, 1473-1483.
Lindevist, O. (1973). Thesis, Univ. of Göteborg, Sweden.
Lindqvist, O. \& Moret, J. (1973a). Acta Cryst. B29, 643650.

Lindevist, O. \& Moret, J. (1973b). Acta Cryst. B29, 956963.

Moret, J. (1972). Thesis, Univ. of Languedoc, Montpellier, France.
Moret, J. \& Lindevist, O. (1972). C. R. Acad. Sci. Paris, Sér. C, 275, 207-210.
Swink, L. N. \& Carpenter, G. B. (1966). Acta Cryst. 21, 578-583.
Zemann, J. (1971). Mh. Chem. 102, 1209-1216.

